1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
/*
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along
with this program. If not, see https://www.gnu.org/licenses/.
*/
use rand::Rng;
use std::vec;
use clap::Parser;
pub struct Image {
pub height: u16,
pub width: u16,
pub frames: u16,
pub pixels: Vec<u8>,
point_data: Vec<PointData>,
cross_distance: f64,
points: Vec<Point>,
}
#[derive(Clone)]
struct Point {
pub x: u16,
pub y: u16,
}
#[derive(Clone)]
struct PointData {
min_dist: f64,
closest_point: Point,
}
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
pub struct Args {
/// width of the image
#[clap(short, long, value_parser)]
pub width: u16,
/// height of the image
#[clap(short, long, value_parser)]
pub height: u16,
/// number of gif frames
#[clap(short, long, value_parser)]
pub frames: u16,
/// number of cells to generate
#[clap(short, long, value_parser)]
pub num_cells: usize,
/// output file
#[clap(short, long, value_parser)]
pub out: String,
}
impl Args {
pub fn read() -> Self {
Args::parse()
}
}
impl Image {
pub fn create_from_args(args: &Args) -> Self {
Image {
height: args.height,
width: args.width,
frames: args.frames,
pixels: vec![0; args.height as usize * args.width as usize * 3],
point_data: vec![
PointData {
min_dist: 0.0,
closest_point: Point { x: 0, y: 0 }
};
args.height as usize * args.width as usize
],
cross_distance: Point { x: 0, y: 0 }.distance(&Point {
x: args.width - 1,
y: args.height - 1,
}),
points: generate_points(args.width, args.height, args.num_cells),
}
}
pub fn fill_canvas(&mut self) {
self.generate_noise();
}
fn generate_noise(&mut self) {
let mut max_dist = 0.0;
// Get distance and nearest point for each point on the canvas
for y in 0..self.height {
for x in 0..self.width {
let index = y as usize * self.width as usize + x as usize;
self.point_data[index] = PointData::get_point_data(self, Point { x, y });
max_dist = f64::max(max_dist, self.point_data[index].min_dist);
}
}
// normalize distances to [0,1]
for y in 0..self.height {
for x in 0..self.width {
let index = y as usize * self.width as usize + x as usize;
self.point_data[index].min_dist /= max_dist;
}
}
// write pixels
for y in 0..self.height {
for x in 0..self.width {
let index = y as usize * self.width as usize + x as usize;
let val = 0xFF - (0xFF as f64 * self.point_data[index].min_dist) as u8;
self.set_pixel(val, val, val, Point { x, y });
}
}
}
fn set_pixel(&mut self, r: u8, g: u8, b: u8, p: Point) {
self.pixels[3 * (self.width as usize * p.y as usize + p.x as usize)] = r;
self.pixels[3 * (self.width as usize * p.y as usize + p.x as usize) + 1] = g;
self.pixels[3 * (self.width as usize * p.y as usize + p.x as usize) + 2] = b;
}
}
impl PointData {
fn get_point_data(image: &Image, p: Point) -> Self {
let mut pd = PointData {
min_dist: image.cross_distance,
closest_point: Point { x: 0, y: 0 },
};
for point in &image.points {
let d = p.distance(point);
if d < pd.min_dist {
pd.min_dist = d;
pd.closest_point = point.clone();
}
}
pd
}
}
impl Point {
fn distance(&self, other: &Point) -> f64 {
let x_dist: f64 = other.x as f64 - self.x as f64;
let y_dist: f64 = other.y as f64 - self.y as f64;
(x_dist * x_dist + y_dist * y_dist).sqrt()
}
}
fn generate_points(width: u16, height: u16, num_cells: usize) -> Vec<Point> {
let mut points = vec![Point { x: 0, y: 0 }; num_cells];
for p in &mut points {
p.x = rand::thread_rng().gen_range(0..width);
p.y = rand::thread_rng().gen_range(0..height);
}
points
}
|