RelaxingFishGame/libs/Big.gd
jacob janzen 1a6dd05f13
Stonks for real this time (#2)
* start labels

* stonks

* stonks for real this time
2024-11-16 11:43:41 -06:00

902 lines
25 KiB
GDScript

class_name Big
extends RefCounted
## Big number class for use in idle / incremental games and other games that needs very large numbers
##
## Can format large numbers using a variety of notation methods:[br]
## AA notation like AA, AB, AC etc.[br]
## Metric symbol notation k, m, G, T etc.[br]
## Metric name notation kilo, mega, giga, tera etc.[br]
## Long names like octo-vigin-tillion or millia-nongen-quin-vigin-tillion (based on work by Landon Curt Noll)[br]
## Scientic notation like 13e37 or 42e42[br]
## Long strings like 4200000000 or 13370000000000000000000000000000[br][br]
## Please note that this class has limited precision and does not fully support negative exponents[br]
## Big Number Mantissa
var mantissa: float
## Big Number Exponent
var exponent: int
## Metric Symbol Suffixes
const suffixes_metric_symbol: Dictionary = {
"0": "",
"1": "k",
"2": "M",
"3": "G",
"4": "T",
"5": "P",
"6": "E",
"7": "Z",
"8": "Y",
"9": "R",
"10": "Q",
}
## Metric Name Suffixes
const suffixes_metric_name: Dictionary = {
"0": "",
"1": "kilo",
"2": "mega",
"3": "giga",
"4": "tera",
"5": "peta",
"6": "exa",
"7": "zetta",
"8": "yotta",
"9": "ronna",
"10": "quetta",
}
# HACK: This dictionary is inefficient, along with toAA().
# Replace with better, ideally utilizing alphabet_aa system
## AA Suffixes
## @deprecated
static var suffixes_aa: Dictionary = {
"0": "",
"1": "k",
"2": "m",
"3": "b",
"4": "t",
"5": "aa",
"6": "ab",
"7": "ac",
"8": "ad",
"9": "ae",
"10": "af",
"11": "ag",
"12": "ah",
"13": "ai",
"14": "aj",
"15": "ak",
"16": "al",
"17": "am",
"18": "an",
"19": "ao",
"20": "ap",
"21": "aq",
"22": "ar",
"23": "as",
"24": "at",
"25": "au",
"26": "av",
"27": "aw",
"28": "ax",
"29": "ay",
"30": "az",
"31": "ba",
"32": "bb",
"33": "bc",
"34": "bd",
"35": "be",
"36": "bf",
"37": "bg",
"38": "bh",
"39": "bi",
"40": "bj",
"41": "bk",
"42": "bl",
"43": "bm",
"44": "bn",
"45": "bo",
"46": "bp",
"47": "bq",
"48": "br",
"49": "bs",
"50": "bt",
"51": "bu",
"52": "bv",
"53": "bw",
"54": "bx",
"55": "by",
"56": "bz",
"57": "ca"
}
## AA Alphabet
const alphabet_aa: Array[String] = [
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m",
"n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"
]
## Latin Ones Prefixes
const latin_ones: Array[String] = [
"", "un", "duo", "tre", "quattuor", "quin", "sex", "septen", "octo", "novem"
]
## Latin Tens Prefixes
const latin_tens: Array[String] = [
"", "dec", "vigin", "trigin", "quadragin", "quinquagin", "sexagin", "septuagin", "octogin", "nonagin"
]
## Latin Hundreds Prefixes
const latin_hundreds: Array[String] = [
"", "cen", "duocen", "trecen", "quadringen", "quingen", "sescen", "septingen", "octingen", "nongen"
]
## Latin Special Prefixes
const latin_special: Array[String] = [
"", "mi", "bi", "tri", "quadri", "quin", "sex", "sept", "oct", "non"
]
## Various options to control the string presentation of Big Numbers
static var options = {
"dynamic_decimals": false,
"dynamic_numbers": 4,
"small_decimals": 3,
"thousand_decimals": 1,
"big_decimals": 1,
"scientific_decimals": 3,
"logarithmic_decimals": 4,
"thousand_separator": ",",
"decimal_separator": ".",
"suffix_separator": "",
"reading_separator": "",
"thousand_name": "thousand"
}
## Maximum Big Number Mantissa
const MANTISSA_MAX: float = 1209600.0
## Big Number Mantissa floating-point precision
const MANTISSA_PRECISION: float = 0.0000001
## int (signed 64-bit) minimum value
const INT_MIN: int = -9223372036854775808
## int (signed 64-bit) maximum value
const INT_MAX: int = 9223372036854775807
func _init(m: Variant = 1.0, e: int = 0) -> void:
if m is Big:
mantissa = m.mantissa
exponent = m.exponent
elif typeof(m) == TYPE_STRING:
var scientific: PackedStringArray = m.split("e")
mantissa = float(scientific[0])
exponent = int(scientific[1]) if scientific.size() > 1 else 0
else:
if typeof(m) != TYPE_INT and typeof(m) != TYPE_FLOAT:
printerr("Big Error: Unknown data type passed as a mantissa!")
mantissa = m
exponent = e
Big._sizeCheck(mantissa)
Big.normalize(self)
## Verifies (or converts) an argument into a Big number
static func _typeCheck(n) -> Big:
if n is Big:
return n
var result := Big.new(n)
return result
## Warns if Big number's mantissa exceeds max
static func _sizeCheck(m: float) -> void:
if m > MANTISSA_MAX:
printerr("Big Error: Mantissa \"" + str(m) + "\" exceeds MANTISSA_MAX. Use exponent or scientific notation")
## [url=https://en.wikipedia.org/wiki/Normalized_number]Normalize[/url] a Big number
static func normalize(big: Big) -> void:
# Store sign if negative
var is_negative := false
if big.mantissa < 0:
is_negative = true
big.mantissa *= -1
if big.mantissa < 1.0 or big.mantissa >= 10.0:
var diff: int = floor(log10(big.mantissa))
if diff > -10 and diff < 248:
var div = 10.0 ** diff
if div > MANTISSA_PRECISION:
big.mantissa /= div
big.exponent += diff
while big.exponent < 0:
big.mantissa *= 0.1
big.exponent += 1
while big.mantissa >= 10.0:
big.mantissa *= 0.1
big.exponent += 1
if big.mantissa == 0:
big.mantissa = 0.0
big.exponent = 0
big.mantissa = snapped(big.mantissa, MANTISSA_PRECISION)
# Return sign if negative
if (is_negative):
big.mantissa *= -1
## Returns the absolute value of a number in Big format
static func absolute(x) -> Big:
var result := Big.new(x)
result.mantissa = abs(result.mantissa)
return result
## Adds two numbers and returns the Big number result [br][br]
static func add(x, y) -> Big:
x = Big._typeCheck(x)
y = Big._typeCheck(y)
var result := Big.new(x)
var exp_diff: float = y.exponent - x.exponent
if exp_diff < 248.0:
var scaled_mantissa: float = y.mantissa * 10 ** exp_diff
result.mantissa = x.mantissa + scaled_mantissa
elif x.isLessThan(y): # When difference between values is too big, discard the smaller number
result.mantissa = y.mantissa
result.exponent = y.exponent
Big.normalize(result)
return result
## Subtracts two numbers and returns the Big number result
static func subtract(x, y) -> Big:
var negated_y := Big.new(-y.mantissa, y.exponent)
return add(negated_y, x)
## Multiplies two numbers and returns the Big number result
static func multiply(x, y) -> Big:
x = Big._typeCheck(x)
y = Big._typeCheck(y)
var result := Big.new()
var new_exponent: int = y.exponent + x.exponent
var new_mantissa: float = y.mantissa * x.mantissa
while new_mantissa >= 10.0:
new_mantissa /= 10.0
new_exponent += 1
result.mantissa = new_mantissa
result.exponent = new_exponent
Big.normalize(result)
return result
## Divides two numbers and returns the Big number result
static func divide(x, y) -> Big:
x = Big._typeCheck(x)
y = Big._typeCheck(y)
var result := Big.new(x)
if y.mantissa > -MANTISSA_PRECISION and y.mantissa < MANTISSA_PRECISION:
printerr("Big Error: Divide by zero or less than " + str(MANTISSA_PRECISION))
return x
var new_exponent = x.exponent - y.exponent
var new_mantissa = x.mantissa / y.mantissa
while new_mantissa > 0.0 and new_mantissa < 1.0:
new_mantissa *= 10.0
new_exponent -= 1
result.mantissa = new_mantissa
result.exponent = new_exponent
Big.normalize(result)
return result
## Raises a Big number to the nth power and returns the Big number result
static func power(x: Big, y) -> Big:
var result := Big.new(x)
if typeof(y) == TYPE_INT:
if y <= 0:
if y < 0:
printerr("Big Error: Negative exponents are not supported!")
result.mantissa = 1.0
result.exponent = 0
return result
var y_mantissa: float = 1.0
var y_exponent: int = 0
while y > 1:
Big.normalize(result)
if y % 2 == 0:
result.exponent *= 2
result.mantissa **= 2
y = y / 2
else:
y_mantissa = result.mantissa * y_mantissa
y_exponent = result.exponent + y_exponent
result.exponent *= 2
result.mantissa **= 2
y = (y - 1) / 2
result.exponent = y_exponent + result.exponent
result.mantissa = y_mantissa * result.mantissa
Big.normalize(result)
return result
elif typeof(y) == TYPE_FLOAT:
if result.mantissa == 0:
return result
# fast track
var temp: float = result.exponent * y
var newMantissa = result.mantissa ** y
if (round(y) == y
and temp <= INT_MAX
and temp >= INT_MIN
and is_finite(temp)
):
if is_finite(newMantissa):
result.mantissa = newMantissa
result.exponent = int(temp)
Big.normalize(result)
return result
# a bit slower, still supports floats
var newExponent: int = int(temp)
var residue: float = temp - newExponent
newMantissa = 10 ** (y * Big.log10(result.mantissa) + residue)
if newMantissa != INF and newMantissa != -INF:
result.mantissa = newMantissa
result.exponent = newExponent
Big.normalize(result)
return result
if round(y) != y:
printerr("Big Error: Power function does not support large floats, use integers!")
return power(x, int(y))
else:
printerr("Big Error: Unknown/unsupported data type passed as an exponent in power function!")
return x
## Square Roots a given Big number and returns the Big number result
static func root(x: Big) -> Big:
var result := Big.new(x)
if result.exponent % 2 == 0:
result.mantissa = sqrt(result.mantissa)
@warning_ignore("integer_division")
result.exponent = result.exponent / 2
else:
result.mantissa = sqrt(result.mantissa * 10)
@warning_ignore("integer_division")
result.exponent = (result.exponent - 1) / 2
Big.normalize(result)
return result
## Modulos a number and returns the Big number result
static func modulo(x, y) -> Big:
var result := Big.new(x.mantissa, x.exponent)
y = Big._typeCheck(y)
var big = { "mantissa": x.mantissa, "exponent": x.exponent }
Big.divide(result, y)
Big.roundDown(result)
Big.multiply(result, y)
Big.subtract(result, big)
result.mantissa = abs(result.mantissa)
return result
## Rounds down a Big number
static func roundDown(x: Big) -> Big:
if x.exponent == 0:
x.mantissa = floor(x.mantissa)
else:
var precision := 1.0
for i in range(min(8, x.exponent)):
precision /= 10.0
if precision < MANTISSA_PRECISION:
precision = MANTISSA_PRECISION
x.mantissa = floor(x.mantissa / precision) * precision
return x
## Equivalent of [code]min(Big, Big)[/code]
static func minValue(m, n) -> Big:
m = Big._typeCheck(m)
if m.isLessThan(n):
return m
else:
return n
## Equivalent of [code]max(Big, Big)[/code]
static func maxValue(m, n) -> Big:
m = Big._typeCheck(m)
if m.isGreaterThan(n):
return m
else:
return n
## Equivalent of [code]Big + n[/code]
func plus(n) -> Big:
return Big.add(self, n)
## Equivalent of [code]Big += n[/code]
func plusEquals(n) -> Big:
var new_value = Big.add(self, n)
mantissa = new_value.mantissa
exponent = new_value.exponent
return self
## Equivalent of [code]Big - n[/code]
func minus(n) -> Big:
return Big.subtract(self, n)
## Equivalent of [code]Big -= n[/code]
func minusEquals(n) -> Big:
var new_value: Big = Big.subtract(self, n)
mantissa = new_value.mantissa
exponent = new_value.exponent
return self
## Equivalent of [code]Big * n[/code]
func times(n) -> Big:
return Big.multiply(self, n)
## Equivalent of [code]Big *= n[/code]
func timesEquals(n) -> Big:
var new_value: Big = Big.multiply(self, n)
mantissa = new_value.mantissa
exponent = new_value.exponent
return self
## Equivalent of [code]Big / n[/code]
func dividedBy(n) -> Big:
return Big.divide(self, n)
## Equivalent of [code]Big /= n[/code]
func dividedByEquals(n) -> Big:
var new_value: Big = Big.divide(self, n)
mantissa = new_value.mantissa
exponent = new_value.exponent
return self
## Equivalent of [code]Big % n[/code]
func mod(n) -> Big:
return Big.modulo(self, n)
## Equivalent of [code]Big %= n[/code]
func modEquals(n) -> Big:
var new_value := Big.modulo(self, n)
mantissa = new_value.mantissa
exponent = new_value.exponent
return self
## Equivalent of [code]Big ** n[/code]
func toThePowerOf(n) -> Big:
return Big.power(self, n)
## Equivalent of [code]Big **= n[/code]
func toThePowerOfEquals(n) -> Big:
var new_value: Big = Big.power(self, n)
mantissa = new_value.mantissa
exponent = new_value.exponent
return self
## Equivalent of [code]sqrt(Big)[/code]
func squareRoot() -> Big:
var new_value := Big.root(self)
mantissa = new_value.mantissa
exponent = new_value.exponent
return self
## Equivalent of [code]Big == n[/code]
func isEqualTo(n) -> bool:
n = Big._typeCheck(n)
Big.normalize(n)
return n.exponent == exponent and is_equal_approx(n.mantissa, mantissa)
## Equivalent of [code]Big > n[/code]
func isGreaterThan(n) -> bool:
return !isLessThanOrEqualTo(n)
## Equivalent of [code]Big >== n[/code]
func isGreaterThanOrEqualTo(n) -> bool:
return !isLessThan(n)
## Equivalent of [code]Big < n[/code]
func isLessThan(n) -> bool:
n = Big._typeCheck(n)
Big.normalize(n)
if (mantissa == 0
and (n.mantissa > MANTISSA_PRECISION or mantissa < MANTISSA_PRECISION)
and n.mantissa == 0
):
return false
if exponent < n.exponent:
if exponent == n.exponent - 1 and mantissa > 10*n.mantissa:
return false #9*10^3 > 0.1*10^4
return true
elif exponent == n.exponent:
if mantissa < n.mantissa:
return true
return false
else:
if exponent == n.exponent + 1 and mantissa * 10 < n.mantissa:
return true
return false
## Equivalent of [code]Big <= n[/code]
func isLessThanOrEqualTo(n) -> bool:
n = Big._typeCheck(n)
Big.normalize(n)
if isLessThan(n):
return true
if n.exponent == exponent and is_equal_approx(n.mantissa, mantissa):
return true
return false
static func log10(x) -> float:
return log(x) * 0.4342944819032518
func absLog10() -> float:
return exponent + Big.log10(abs(mantissa))
func ln() -> float:
return 2.302585092994045 * logN(10)
func logN(base) -> float:
return (2.302585092994046 / log(base)) * (exponent + Big.log10(mantissa))
func pow10(value: int) -> void:
mantissa = 10 ** (value % 1)
exponent = int(value)
## Sets the Thousand name option
static func setThousandName(name: String) -> void:
options.thousand_name = name
## Sets the Thousand Separator option
static func setThousandSeparator(separator: String) -> void:
options.thousand_separator = separator
## Sets the Decimal Separator option
static func setDecimalSeparator(separator: String) -> void:
options.decimal_separator = separator
## Sets the Suffix Separator option
static func setSuffixSeparator(separator: String) -> void:
options.suffix_separator = separator
## Sets the Reading Separator option
static func setReadingSeparator(separator: String) -> void:
options.reading_separator = separator
## Sets the Dynamic Decimals option
static func setDynamicDecimals(d: bool) -> void:
options.dynamic_decimals = d
## Sets the Dynamic numbers digits option
static func setDynamicNumbers(d: int) -> void:
options.dynamic_numbers = d
## Sets the small decimal digits option
static func setSmallDecimals(d: int) -> void:
options.small_decimals = d
## Sets the thousand decimal digits option
static func setThousandDecimals(d: int) -> void:
options.thousand_decimals = d
## Sets the big decimal digits option
static func setBigDecimals(d: int) -> void:
options.big_decimals = d
## Sets the scientific notation decimal digits option
static func setScientificDecimals(d: int) -> void:
options.scientific_decimals = d
## Sets the logarithmic notation decimal digits option
static func setLogarithmicDecimals(d: int) -> void:
options.logarithmic_decimals = d
## Converts the Big Number into a string
func toString() -> String:
var mantissa_decimals := 0
if str(mantissa).find(".") >= 0:
mantissa_decimals = str(mantissa).split(".")[1].length()
if mantissa_decimals > exponent:
if exponent < 248:
return str(mantissa * 10 ** exponent)
else:
return toPlainScientific()
else:
var mantissa_string := str(mantissa).replace(".", "")
for _i in range(exponent-mantissa_decimals):
mantissa_string += "0"
return mantissa_string
## Converts the Big Number into a string (in plain Scientific format)
func toPlainScientific() -> String:
return str(mantissa) + "e" + str(exponent)
## Converts the Big Number into a string (in Scientific format)
func toScientific(no_decimals_on_small_values = false, force_decimals = false) -> String:
if exponent < 3:
var decimal_increments: float = 1 / (10 ** options.scientific_decimals / 10)
var value := str(snappedf(mantissa * 10 ** exponent, decimal_increments))
var split := value.split(".")
if no_decimals_on_small_values:
return split[0]
if split.size() > 1:
for i in range(options.logarithmic_decimals):
if split[1].length() < options.scientific_decimals:
split[1] += "0"
return split[0] + options.decimal_separator + split[1].substr(0,min(options.scientific_decimals, options.dynamic_numbers - split[0].length() if options.dynamic_decimals else options.scientific_decimals))
else:
return value
else:
var split := str(mantissa).split(".")
if split.size() == 1:
split.append("")
if force_decimals:
for i in range(options.scientific_decimals):
if split[1].length() < options.scientific_decimals:
split[1] += "0"
return split[0] + options.decimal_separator + split[1].substr(0,min(options.scientific_decimals, options.dynamic_numbers-1 - str(exponent).length() if options.dynamic_decimals else options.scientific_decimals)) + "e" + str(exponent)
## Converts the Big Number into a string (in Logarithmic format)
func toLogarithmic(no_decimals_on_small_values = false) -> String:
var decimal_increments: float = 1 / (10 ** options.logarithmic_decimals / 10)
if exponent < 3:
var value := str(snappedf(mantissa * 10 ** exponent, decimal_increments))
var split := value.split(".")
if no_decimals_on_small_values:
return split[0]
if split.size() > 1:
for i in range(options.logarithmic_decimals):
if split[1].length() < options.logarithmic_decimals:
split[1] += "0"
return split[0] + options.decimal_separator + split[1].substr(0,min(options.logarithmic_decimals, options.dynamic_numbers - split[0].length() if options.dynamic_decimals else options.logarithmic_decimals))
else:
return value
var dec := str(snappedf(abs(log(mantissa) / log(10) * 10), decimal_increments))
dec = dec.replace(".", "")
for i in range(options.logarithmic_decimals):
if dec.length() < options.logarithmic_decimals:
dec += "0"
var formated_exponent := formatExponent(exponent)
dec = dec.substr(0, min(options.logarithmic_decimals, options.dynamic_numbers - formated_exponent.length() if options.dynamic_decimals else options.logarithmic_decimals))
return "e" + formated_exponent + options.decimal_separator + dec
## Formats an exponent for string format
func formatExponent(value) -> String:
if value < 1000:
return str(value)
var string := str(value)
var string_mod := string.length() % 3
var output := ""
for i in range(0, string.length()):
if i != 0 and i % 3 == string_mod:
output += options.thousand_separator
output += string[i]
return output
## Converts the Big Number into a float
func toFloat() -> float:
return snappedf(float(str(mantissa) + "e" + str(exponent)),0.01)
func toPrefix(no_decimals_on_small_values = false, use_thousand_symbol=true, force_decimals=true, scientic_prefix=false) -> String:
var number: float = mantissa
if not scientic_prefix:
var hundreds = 1
for _i in range(exponent % 3):
hundreds *= 10
number *= hundreds
var split := str(number).split(".")
if split.size() == 1:
split.append("")
if force_decimals:
var max_decimals = max(max(options.small_decimals, options.thousand_decimals), options.big_decimals)
for i in range(max_decimals):
if split[1].length() < max_decimals:
split[1] += "0"
if no_decimals_on_small_values and exponent < 3:
return split[0]
elif exponent < 3:
if options.small_decimals == 0 or split[1] == "":
return split[0]
else:
return split[0] + options.decimal_separator + split[1].substr(0,min(options.small_decimals, options.dynamic_numbers - split[0].length() if options.dynamic_decimals else options.small_decimals))
elif exponent < 6:
if options.thousand_decimals == 0 or (split[1] == "" and use_thousand_symbol):
return split[0]
else:
if use_thousand_symbol: # when the prefix is supposed to be using with a K for thousand
for i in range(3):
if split[1].length() < 3:
split[1] += "0"
return split[0] + options.decimal_separator + split[1].substr(0,min(3, options.dynamic_numbers - split[0].length() if options.dynamic_decimals else 3))
else:
for i in range(3):
if split[1].length() < 3:
split[1] += "0"
return split[0] + options.thousand_separator + split[1].substr(0,3)
else:
if options.big_decimals == 0 or split[1] == "":
return split[0]
else:
return split[0] + options.decimal_separator + split[1].substr(0,min(options.big_decimals, options.dynamic_numbers - split[0].length() if options.dynamic_decimals else options.big_decimals))
func _latinPower(european_system) -> int:
if european_system:
@warning_ignore("integer_division")
return int(exponent / 3) / 2
@warning_ignore("integer_division")
return int(exponent / 3) - 1
func _latinPrefix(european_system) -> String:
var ones := _latinPower(european_system) % 10
var tens := int(_latinPower(european_system) / floor(10)) % 10
@warning_ignore("integer_division")
var hundreds := int(_latinPower(european_system) / 100) % 10
@warning_ignore("integer_division")
var millias := int(_latinPower(european_system) / 1000) % 10
var prefix := ""
if _latinPower(european_system) < 10:
prefix = latin_special[ones] + options.reading_separator + latin_tens[tens] + options.reading_separator + latin_hundreds[hundreds]
else:
prefix = latin_hundreds[hundreds] + options.reading_separator + latin_ones[ones] + options.reading_separator + latin_tens[tens]
for _i in range(millias):
prefix = "millia" + options.reading_separator + prefix
return prefix.lstrip(options.reading_separator).rstrip(options.reading_separator)
func _tillionOrIllion(european_system) -> String:
if exponent < 6:
return ""
var powerKilo := _latinPower(european_system) % 1000
if powerKilo < 5 and powerKilo > 0 and _latinPower(european_system) < 1000:
return ""
if (
powerKilo >= 7 and powerKilo <= 10
or int(powerKilo / floor(10)) % 10 == 1
):
return "i"
return "ti"
func _llionOrLliard(european_system) -> String:
if exponent < 6:
return ""
if int(exponent/floor(3)) % 2 == 1 and european_system:
return "lliard"
return "llion"
func getLongName(european_system = false, prefix="") -> String:
if exponent < 6:
return ""
else:
return prefix + _latinPrefix(european_system) + options.reading_separator + _tillionOrIllion(european_system) + _llionOrLliard(european_system)
## Converts the Big Number into a string (in American Long Name format)
func toAmericanName(no_decimals_on_small_values = false) -> String:
return toLongName(no_decimals_on_small_values, false)
## Converts the Big Number into a string (in European Long Name format)
func toEuropeanName(no_decimals_on_small_values = false) -> String:
return toLongName(no_decimals_on_small_values, true)
## Converts the Big Number into a string (in Latin Long Name format)
func toLongName(no_decimals_on_small_values = false, european_system = false) -> String:
if exponent < 6:
if exponent > 2:
return toPrefix(no_decimals_on_small_values) + options.suffix_separator + options.thousand_name
else:
return toPrefix(no_decimals_on_small_values)
var suffix = _latinPrefix(european_system) + options.reading_separator + _tillionOrIllion(european_system) + _llionOrLliard(european_system)
return toPrefix(no_decimals_on_small_values) + options.suffix_separator + suffix
## Converts the Big Number into a string (in Metric Symbols format)
func toMetricSymbol(no_decimals_on_small_values = false) -> String:
@warning_ignore("integer_division")
var target := int(exponent / 3)
if not suffixes_metric_symbol.has(str(target)):
return toScientific()
else:
return toPrefix(no_decimals_on_small_values) + options.suffix_separator + suffixes_metric_symbol[str(target)]
## Converts the Big Number into a string (in Metric Name format)
func toMetricName(no_decimals_on_small_values = false) -> String:
@warning_ignore("integer_division")
var target := int(exponent / 3)
if not suffixes_metric_name.has(str(target)):
return toScientific()
else:
return toPrefix(no_decimals_on_small_values) + options.suffix_separator + suffixes_metric_name[str(target)]
# HACK: This function is wasteful and requires remaking.
# It adds new entries to the dictionary suffixes_aa instead of generating the suffixes
# like the other functions
## Converts the Big Number into a string (in AA format)
## @deprecated
func toAA(no_decimals_on_small_values = false, use_thousand_symbol = true, force_decimals=false) -> String:
@warning_ignore("integer_division")
var target := int(exponent / 3)
var aa_index := str(target)
var suffix := ""
if not suffixes_aa.has(aa_index):
var offset := target + 22
var base := alphabet_aa.size()
while offset > 0:
offset -= 1
var digit := offset % base
suffix = alphabet_aa[digit] + suffix
offset /= base
suffixes_aa[aa_index] = suffix
else:
suffix = suffixes_aa[aa_index]
if not use_thousand_symbol and target == 1:
suffix = ""
var prefix = toPrefix(no_decimals_on_small_values, use_thousand_symbol, force_decimals)
return prefix + options.suffix_separator + suffix